Question	Correct Answer
4d	$D = \{x \in \mathbf{R}\},\$
	$R = \{ y \in \mathbf{R} \mid -3 \le y \le 3 \}$
	(Correct in solutions manual)
4d	Entire number line should be shaded on graph.
2b	D = [0, 10]
2c	R = [10, 50]
3	(-4, -10)
7c	$ (-4, -10) g(x) = -2(2^{3(x-1)}) + 4 $
9c	(-1, -23)
12	Graph of $h(x)$ (green) should be reflection of graph of
	f(x) over x-axis.
6b	Labels should be in degrees, not radians. Curves
	should not have arrowheads at ends.
6	$\int 15, if 0 \le x \le 500$
	$15 + 0.02(x - 500)$, if $x \ge 500$
12	discontinuous at $p = 15$; continuous at 0
3	$R = \{ f(x) \in \mathbf{R} \mid f(x) \ge -1 \}$
17a	$\int 30, if \ x \le 200$
	24 + 0.03x, if x > 200
	(Correct in solutions manual)
7a	(-2, 17)
9a	\$11 500
9b	0.05 , if $x \le 50000$
	$\begin{cases} 0.12x - 5500, & \text{if } x > 50000 \end{cases}$
	4d 2b 2c 3 7c 9c 12 6b 6 12 3 17a 7a 9a

Location	Question	Correct Answer
Mid-Chapter	1b	750; 0; 250; 1100; 400 m ³ /month
Review		
Mid-Chapter	3b	$t \approx 2$; Answers may vary. For example: The graph has
Review		a vertex at (2, 21). It appears that a tangent line at this
		point would be horizontal. $\frac{(f(2.01)-f(1.99))}{0.02}$
		0.02
2.5	2	0 mm Hg/s

Chapter	4a	Answers may vary. For example, because the unit of
Review		the equation is years, you would not choose $3 \le t \le 4$
		and $4 \le t \le 5$. A better choice would be $3.75 \le t \le 4.0$
		and $4 \le t \le 4.25$.
Chapter	8	Graph should start at (0, 0) and connect to the rest of
Review		the curve.

Advanced Functions Chapter 3

Location	Question	Correct Answer
Getting	8	The values of x that make $f(x) = 0 = n$ (Located on
Started		arrow above box with "The zeros are -2 and -6.")
3.4	2e	$y = x^2$; reflection in the x-axis, vertical stretch by a
		factor of 4.8, and horizontal translation 3 units right
		(Correct in solutions manual)
3.4	6f	(-11, -3), (-4, -2), (10, 6)
3.5	3c	x-6
3.5	6d	$x^2 + 2x - 8$ remainder -4
3.6	8a	Graph is incorrect; should be graph of $y = (x + 6)(x +$
		5)(x-2)
Chapter	2	As $x \to -\infty$, $y \to +\infty$, and as $x \to \infty$, $y \to -\infty$.
Review		

Location	Question	Correct Answer
4.1	2d	$0, \frac{2}{5}, -3$ (Correct in solutions manual)
4.1	14c	0.45 s, 3.33 s (Correct in solutions manual)
4.1	16	x = -3, x = -2, x = 5 (Correct in solutions manual)
4.2	17b	Move the terms with variables to one side and constants to the other. Graph $y = 2^x - x$ and $y = 4$ on a graphing calculator and determine where $y = 2^x - x$ is below $y = 4$. $-3.93 < x < 2.76$
4.2	11a	Answers may vary. For example, $\frac{1}{2}x+1<3$
4.2	19b	$\{x \in \mathbf{R} \mid -3 \ge y \ge 3\}$
4.2	19d	$\{x \in \mathbf{R} \mid x \le -3\}; (-\infty, -3)$ graph should be shaded from -3 to left
Mid-Chapter Review	6a	Answers may vary. For example, $3x + 1 > x + 15$
Mid-Chapter Review	6b	Answers may vary. For example, $5x - 1 < x - 33$
Mid-Chapter	6c	Answers may vary. For example, $x - 3 \le 3x - 1 \le x - 1$

Review		13
4.3	6e	$-\frac{3}{2} \le x \text{ or } x \ge 3 \text{ (Correct in solutions manual)}$
4.3	18	$x-1 \le \text{or } x \ge 2$ (Correct in solutions manual)
4.4	2e	$0 \le x \le 2$
4.4	4a	7 (Correct in solutions manual)
4.4	4b	Answers may vary. For example, (4.5, 3). (Correct in solutions manual)
4.4	11a	Remove graph.
4.4	11b, 11c	Answers should be combined. (Correct in solutions manual)
Chapter Review	3b	-3.10 (Correct in solutions manual)
Chapter Review	6a	Answers may vary. For example, $3x + 1 > x + 17$
Chapter Review	6b	Answers may vary. For example, $4x - 4 \ge x - 16$
Chapter Review	6c	Answers may vary. For example, $3x + 3 \le x - 21$
Chapter Review	6d	Answers may vary. For example, $x - 19 < 3x - 1 < x - 3$
Chapter Review	7b	$x \in (-\infty, -\frac{23}{8}]$
Chapter Self- Test	8a	$\{x \in \mathbf{R} \mid -2 < x < 7\}$

Location	Question	Correct Answer
Getting	2f	$\frac{a-b}{2a-3b}$, $a \neq -3$, 3
Started		$2a-3b^{,\ a\neq -3,\ 3}$
Getting	3c	$-4x + 8, x \neq -2, 3$
Started		
Getting	4d	$\frac{3x+6}{x^2-3x}$, $x \neq 0, 3$
Started		$x^2 - 3x^2 \neq 0, 3$
Getting	4f	$\frac{-2a+50}{(a+3)(a-5)(a-4)}, x \neq -3, 4, 5$
Started		$(a+3)(a-5)(a-4)$, $x \neq -3, 4, 5$
Getting	5d	x = 11
Started		
5.1	9a	$D = \{x \in \mathbf{R}\}$
		$R = \{ y \in \mathbf{R} \}$
		y-intercept = 8
		x-intercept = -4
		negative on $(-\infty, -4)$
		positive on $(-4, -\infty)$

		increasing on $(-\infty,\infty)$
		equation of reciprocal: $y = \frac{1}{2x+8}$
-	01	
5.1	9b	$D = \{x \in \mathbf{R}\}\$ $R = \{y \in \mathbf{R}\}\$
		y-intercept = -3
		3
		x -intercept = $-\frac{3}{4}$
		positive on $(-\infty, -\frac{3}{4})$
		negative on $\left(-\frac{3}{4}, \infty\right)$
		decreasing on $(-\infty, \infty)$
		equation of reciprocal: $y = \frac{1}{-4x-3}$
5.1	9c	$D = \{x \in \mathbf{R}\}$
		$R = \{ y \in \mathbf{R} \mid y \le -12.25 \}$ $y : intercent = 12$
		y-intercept = 12 x-intercepts = , -3
		decreasing on $(-\infty, 0.5)$
		increasing on $(0.5, \infty)$
		positive on $(-\infty, -3)$
		negative on (-3, 4)
		equation of reciprocal: $y = \frac{1}{x^2 - x - 12}$
5.1	9d	$D = \{x \in \mathbf{R}\}$
		$R = \{ y \in \mathbf{R} \mid y \le 0.5 \}$
		y-intercept = $-12x$ -intercepts = $3, 2$
		increasing on $(-\infty, 2.5)$
		decreasing on $(2.5, \infty)$
		negative on $(-\infty, 2)$ and $(3, \infty)$
		positive on (2, 3)
		equation of reciprocal: $y = \frac{1}{-2x^2 + 10x - 12}$
5.1	12e	D = $\{x \in \mathbf{R} \mid 1 \le x \le 10\ 000\},\$ R = $\{y \in \mathbf{R} \mid 1 \le y \le 10\ 000\}$
5.2	1d	D; The function in the denominator has zeros at $x = 1$
		and $x = -3$. the rational function has vertical
5.2	2i	asymptotes as $x = 1$ and $x = -3$.
3.2	\(\times \)	vertical asymptote at $x = -\frac{1}{4}$; horizontal asymptote at
		y = 2

5.2	20	w ± 2
5.2	3c	$y = \frac{x+2}{x^2+x-2}$
5.3	2e	$D = \{x \in \mathbf{R} \mid x \neq 2\}$ $\mathbf{R} = \{x \in \mathbf{R} \mid x \neq 0\}$
<i>5</i> 2	2.0	$R = \{ y \in \mathbf{R} \mid y \neq 0 \}$
5.3	3f	positive: $(-\infty, -1)$ and $(\frac{3}{4}, \infty)$
		negative: $(-1, \frac{3}{4})$
5.3	4a	$x = -3$; As $x \to -3$ from the left, $y \to -\infty$. As $x \to -3$
<i>5.</i> 2	41	from the right, $y \to \infty$.
5.3	4b	$x = 5$; As $x \to 5$ from the left, $y \to -\infty$. As $x \to 5$ from the right, $y \to \infty$.
5.3	4c	$x = \frac{1}{2}$; As $x \to \frac{1}{2}$ from the left, $y \to -\infty$. As $x \to \frac{1}{2}$ from
5.3	4d	the right, $y \rightarrow$.
3.3	40	$x = -\frac{1}{4}$; As $x \to -\frac{1}{4}$ from the left, $y \to -\infty$. As $x \to -\frac{1}{4}$
		from the right, $y \to \infty$.
5.3	5c	vertical asymptote at $x = \frac{1}{4}$
		horizontal asymptote at $y = \frac{1}{4}$
		'
		$D = \{ x \in \mathbf{R} \mid x \neq \frac{1}{4} \}$
		$R = \{ y \in \mathbf{R} \mid y \neq \frac{1}{4} \}$
		x-intercept = -5
		y-intercept = -5
		$f(x)$ is positive on $(-\infty, -5)$ and $(\frac{1}{4}, \infty)$ and negative on
		$(-5,\frac{1}{4}).$
		The function is decreasing on $(-\infty, \frac{1}{4})$ and on $(\frac{1}{4}, \infty)$.
	ļ	The function is never increasing.
5.3	7a	The equation has a general vertical asymptote at
		$x = -\frac{1}{n}$. The function has a general horizontal
		asymptote at $y = \frac{8}{n}$. The vertical asymptotes are $-\frac{1}{8}$,
		$-\frac{1}{4}$, $-\frac{1}{2}$, and -1 . The horizontal asymptotes are 8, 4,
		2, and 1. The function contracts as <i>n</i> increases. The
		2, and 1. The function contracts as n increases. The

	1	
		function is positive on $(-\infty, -\frac{1}{n})$ and $(0, \infty)$. The
		function is negative on $(-\frac{1}{n}, 0)$.
5.3	7c	The horizontal asymptote is $y = \frac{8}{n}$, but because <i>n</i> is negative, the value of <i>y</i> is negative. The vertical
		asymptote is $x = -\frac{1}{n}$, but because <i>n</i> is negative, the
		value of x is positive. The function is negative on
		$(-\infty, 0)$ and $(-\frac{1}{n}, \infty)$. The function is positive on
		$(0, -\frac{1}{n}).$
5.3	8	f(x) will have a vertical asymptote at $x = 1$; $g(x)$ will
		have a horizontal asymptote at $x = \frac{1}{2}$. $f(x)$ will have a
		horizontal asymptote at $x = 3$; $g(x)$ will have a vertical
		asymptote at $x = \frac{1}{2}$.
5.3	10	The concentration increases over the 24 h period and approaches approximately 1.85 mg/L.
5.3	14a	f(x) and $m(x)$
5.3	14b	g(x)
Mid-Chapter	2a	$D = \{x \in \mathbf{R}\}; R = \{y \in \mathbf{R}\}; y\text{-intercept} = 6;$
Review		x-intercept = $-\frac{3}{2}$; negative on $(-\infty, -\frac{3}{2})$; positive on
		$(-\frac{3}{2},\infty)$; increasing on $(-\infty,\infty)$
Mid-Chapter Review	2b	D = $\{x \in \mathbf{R}\}$; R = $\{y \in \mathbf{R} \mid y \ge -4\}$; y-intercept = -4; x-intercepts are 2 and -2; decreasing on $(-\infty, 0)$; increasing on $(0, \infty)$; positive on $(-\infty, -2)$; increasing on $(2, \infty)$;negative on $(-2, 2)$
Mid-Chapter Review	2c	D = $\{x \in \mathbf{R}\}$; R = $\{y \in \mathbf{R} \mid y \ge 6\}$; y-intercept = 6; no x-intercepts; function will never be negative; decreasing on $(-\infty, 0)$; increasing on $(0, \infty)$
Mid-Chapter Review	2d	$D = \{x \in \mathbf{R}\}; R = \{y \in \mathbf{R}\}; y\text{-intercept} = -4; x\text{-intercept} = -2; function is always decreasing};$
Mid-Chapter Review	4a	positive on $(-\infty, -2)$; negative on $(-2, \infty)$ x = 2; horizontal asymptote
Mid-Chapter Review	4e	x = -5 and $x = 3$ (delete "vertical asymptotes")

Mid Chantan	E	7 1
Mid-Chapter Review	5	$y = \frac{x}{x-2}$, $y = 1$; $y = -\frac{7}{4}$; $y = \frac{1}{x^2 + 2x - 15}$, $y = 0$
Mid-Chapter Review	6a	D = $\{x \in \mathbf{R} \mid x \neq 6\}$; vertical asymptote: $x = 6$; horizontal asymptote: $y = 0$; no x -intercept;
		y-intercept: $-\frac{5}{6}$; negative when the denominator is
		negative; positive when the numerator is positive;
		$x - 6$ is negative on $x < 6$; $f(x)$ is negative on $(-\infty, 6)$ and positive on $(6, \infty)$; function is decreasing on
		$(-\infty, 6)$ and $(6, \infty)$
Mid-Chapter	6b	D = $\{x \in \mathbb{R} \mid x \neq -4\}$; vertical asymptote: $x = -4$;
Review		horizontal asymptote: $y = 3$; x -intercept: $x = 0$; y -intercept: $f(0) = 0$; function is increasing on $(-\infty, -4)$
		and $(-4, \infty)$; positive on $(-\infty, -4)$ and $(0, \infty)$; negative
Milel	(on (-4, 0)
Mid-Chapter Review	6c	$D = \{x \in \mathbb{R} \mid x \neq 2\}$; straight, horizontal line with a hole at $x = -2$; always positive and never increases or
		decreases
Mid-Chapter Review	6d	$D = \{x \in \mathbf{R} \mid x \neq \frac{1}{2}\}; \text{ vertical asymptote: } x = \frac{1}{2};$
		horizontal asymptote: $y = \frac{1}{2}$; x-intercept: $x = 2$;
		y-intercept: $f(0) = 5$; function is increasing on $(-\infty, \frac{1}{2})$
		and $(\frac{1}{2}, \infty)$
5.4	1	Yes; answers may vary. For example, substituting
		each value for x in the equation produces the same value on each side of the equation, so both are
		solutions.
5.4	6d	x = 0 and $x = 1$
5.4	6e	$x = -1$ and $x = -\frac{27}{13}$
5.4 5.4	7e	x = -1.72, 2.72
5.4	8a	$\frac{x+1}{x-2} = \frac{x+3}{x-4}$
		x-2 $x-4$ Multiply both sides by the LCD, $(x-2)$ $(x-4)$.
		$(x-2)(x-4)\left(\frac{x+1}{x-2}\right)$
		$= (x-2)(x-4)\left(\frac{x+3}{x-4}\right)$
		(x-4)(x+1) = (x-2)(x+3) Simplify. $x^2 - 3x - 4 = x^2 + x - 6$
		Simplify the equation so that 0 is on one side of the

		· ·
		equation.
		$x^{2}-x^{2}-3x-x-4+6$ $=x^{2}-x^{2}+x-x-6+6$
		-4x + 2 = 0
		-4x = -2
		$x = \frac{1}{2}$
		2
5.4	12a	After 6666.67 min
5.4	13b	1.05 min
5.5	1a	$(-\infty, 1)$ and $(3, \infty)$
5.5	4a	-5 < x < -4.5
5.5	4f	$-1 < x < \frac{7}{9}$ and $x > 4$
	- 1	8
5.5	5d	t < -5 and $0 < t < 3$
5.5	6a	$x \in (-6, -1] \text{ or } x \in (4, \infty)$
5.5	6b	$x \in (-\infty, -3)$
5.5	6c	$x \in (-4, -2] \text{ or } x \in (-1, 2]$
5.5	7a	$x < -6, -1 < x < \frac{1}{2}, x > 2$
5.5	8c	It would be difficult to find a situation that could be
		represented by these rational expressions because very
		few positive values of t yield a positive value of y.
5.5	9	Yes, as $f(t) - g(t) > 0$ on the interval $(0, 0.31)$. For
		instance, the bacteria in the tap water will outnumber
		the bacteria in the pond water after $t = 0.2$ days.
5.5	10a	(x-5)(x+1)
		$\frac{(x-5)(x+1)}{2x} < 0$
5.5	11	when $1 < x < 5$
5.5	14	$14.48^{\circ} < x < 165.52^{\circ} \text{ and } 180^{\circ} < x < 360^{\circ}$
5.5	15	$0^{\circ} < x < 2^{\circ}$
5.6	5d	11.72
5.6	6a	slope = 286.1; vertical asymptote: $x = -0.3$
5.6	6b	slope = 2.74; vertical asymptote: $x = -5$
5.6	6c	slope = -44.64 ; vertical asymptote: $x = -\frac{5}{3}$
5.6	7b	0
5.6	9b	-\$1.22 per T-shirt
5.6	10a	-11 houses per month
5.6	10b	-1 house per month
5.6	12d	The instantaneous speed for a specific time, <i>t</i> , is the
	1-4	acceleration of the object at this time.
Chapter	1b	$D = \{x \in \mathbb{R}\}; R = \{y \in \mathbb{R} \mid y \ge -10.125\};$
Review		$x - (x \in \mathbf{K})$, $x - (y \in \mathbf{K}) \neq (x = 10.125)$, $x - (x \in \mathbf{K})$, $x - (y \in \mathbf{K}) \neq (x = 10.125)$,
110,10,1		positive on $(-\infty, -4)$ and $(0.5, \infty)$;
	1	positive on $(\infty, \exists j \text{ and } (0.5, \infty),$

		nagative on (1 05):
		negative on (-4, 0.5);
		decreasing on $(-\infty, -1.75)$; increasing on $(-1.75, \infty)$
Chapter	1c	$D = \{x \in \mathbf{R}\}; R = \{y \in \mathbf{R} \mid y \ge 2\}; \text{ no } x\text{-intercepts};$
Review		y-intercept = 2; decreasing on $(-\infty, 0)$; increasing on
		$(0, \infty)$; always positive; never negative
Chapter	4	The locust population increased during the first
Review		1.4 years, to reach a maximum of 1 287 000. The
		population gradually decreased until the end of the
		50 years, when the population was 141 400.
Chapter	10d	0 < x < 1.5 or x = 3
Review		
Chapter	11	t > 64.73
Review		
Chapter	14	(6, 6)
Review		
Chapter Self-	6b	The graph will have a hole at $x = -\frac{b}{a}$ rather than a
Test		I ne graph will have a note at $x = -\frac{1}{a}$ rather than a
		vertical asymptote at this point if it happens that
		cx + d = k(ax + b) for some real number k.

Location	Question	Correct Answer
6.1	7c	$-\pi$ radians
6.1	7e	3π
		<u>4</u>
6.1	7h	$-\frac{2\pi}{2}$
<i>C</i> 1	01	3
6.1	9b	81.25 m
6.1	16	86.81 radians/s
6.2	2d iv	$\theta = \frac{\pi}{2}$
6.2	4c	$-\cot\left(\frac{\pi}{4}\right)$
6.2	4d	$-\sec\left(\frac{\pi}{6}\right)$
6.2	8a	$-\cos\left(\frac{\pi}{4}\right)$
6.2	8b	$-\tan\left(\frac{\pi}{6}\right)$
6.2	8c	$-\csc\left(\frac{\pi}{3}\right)$

6.2	8d	$-\cot\left(\frac{\pi}{3}\right)$
6.2	8e	$-\sin\left(\frac{\pi}{6}\right)$
6.4	5b	period = 6π , amplitude = 6, equation of the axis is $y = 6$; $y = -6\sin(0.5x) - 2$
6.4	9b	50
6.6	9	$0.98 \le t \le 1.52 \text{ min},$
		$3.48 \text{ min} \le t \le 4.02 \text{ min},$
		$5.98 \text{ min} \le t \le 6.52 \text{ min}$
6.6	10a	$n(t) = 3.7 \cos\left(\frac{\pi}{183}(t - 172)\right) + 12$
6.6	10b	y = 9.2 hours
6.7	9b	fastest: $t = 4$ months, $t = 16$ months, $t = 28$ months, $t = 40$ months; slowest: $t = 10$ months, $t = 22$ months , $t = 34$ months, $t = 46$ months
6.7	9c	about 1.01 mice per owl/month
Chapter Review	6a	$\tan\theta = \frac{12}{-5}$
Chapter Review	6c	about 112.6° or 247.4°
Chapter Review	10	$y = 3\cos\left(x + \frac{3\pi}{4}\right) - 1$
Chapter Self- Test	3	$y \approx 94.9$

Location	Question	Correct Answer
7.4	4b	$LS = 1 - 2\sin^2 x$
		$=\cos^2 x$
		$=2\cos^2 x - 1$
		= RS
7.4	9a	$LS = \frac{\cos^{2} \theta - \sin^{2} \theta}{\cos^{2} \theta + \sin \theta \cos \theta}$ $= \frac{(\cos \theta - \sin \theta)(\cos \theta + \sin \theta)}{(\cos \theta)(\cos \theta + \sin \theta)}$ $= \frac{\cos \theta - \sin \theta}{\cos \theta}$ $= \frac{\cos \theta}{\cos \theta} - \frac{\sin \theta}{\cos \theta}$

	1	1
		$= 1 - \tan \theta$
7.4	0	= RS
7.4	9c	$RS = \frac{1}{\cos^2 x} - 1 - \cos^2 x$
		$= \frac{1}{\cos^2 x} - \frac{\cos^2 x}{\cos^2 x} - \cos^2 x$
		$=\frac{1-\cos^2 x}{\cos^2 x}-\cos^2 x$
		$= \frac{\sin^2 x}{\cos^2 x} - \cos^2 x$
		$= \tan^2 x - \cos^2 x$
	0.1	= LS
7.4	9d	$LS = \frac{1 - \cos \theta}{(1 + \cos \theta)(1 - \cos \theta)} + \frac{1 + \cos \theta}{(1 + \cos \theta)(1 - \cos \theta)}$
		$(1+\cos\theta)(1-\cos\theta) (1+\cos\theta)(1-\cos\theta)$
		$=\frac{1-\cos\theta+1+\cos\theta}{1-\cos^2\theta}$
		$1-\cos^2\theta$
		$=\frac{2}{\sin^2\theta}$
	1.0	= RS
7.4	10a	$LS = \cos x \tan^3 x$
		$=\cos x \left(\frac{\sin^3 x}{\cos^3 x}\right)$
		$=\frac{\sin^3 x}{2}$
		$=\frac{\sin x}{\cos^2 x}$
		$=\frac{\sin^3 x}{\cos^2 x}\sin x$
		$= \tan^2 x \sin x$
		= RS
7.4	10b	$LS = \sin^2 \theta + \cos^4 \theta$
		$= \sin^2 \theta + \cos^2 \theta \cos^2 \theta$
		$= \sin^2 \theta + (1 - \sin^2 \theta)(1 - \sin^2 \theta)$
		$= \sin^2 \theta + (1 - 2\sin^2 \theta + (\sin^2 \theta \sin^2 \theta))$
		$= \sin^2 \theta + 1 - 2\sin^2 \theta + (\sin^2 \theta \sin^2 \theta)$
		,
		$= 1 - \sin^2 \theta + \sin^2 \theta \sin^2 \theta$ $= \cos^2 \theta + \sin^2 \theta \sin^2 \theta$
		$= \cos^2 \theta + \sin^4 \theta$ $= RS$
7.4	10c	$(\tan^2 x + 1)$
		$LS = \left(\sin x + \cos x\right) \left(\frac{\tan^{-x} + 1}{\tan x}\right)$
	<u> </u>	, ,

	1	
		$= \left(\sin x + \cos x\right) \left(\frac{\sec^2 x}{\tan x}\right)$
		$= \left(\sin x + \cos x\right) \left(\frac{1}{\cos^2 x}\right) \left(\frac{1}{\tan x}\right)$
		$= \left(\sin x + \cos x\right) \left(\frac{\cos x}{\sin x \cos^2 x}\right)$
		$= (\sin x + \cos x) \left(\frac{1}{\cos^2 x}\right) \left(\frac{\cos x}{\sin x}\right)$
		$= \left(\sin x + \cos x\right) \left(\frac{1}{\sin x \cos x}\right)$
		$=\frac{\sin x}{1+\cos x}+\frac{\cos x}{1+\cos x}$
		$\sin x \cos x \sin x \cos x$
		$=\frac{1}{1}+\frac{1}{1}$
		$\cos x - \sin x$
7.4	104	= RS
/ . '1	10d	$LS = \tan^2 \beta + \cos^2 \beta + \sin^2 \beta$
		$=\tan^2\beta+1$
		$= \sec^2 \beta$
		1
		$=\frac{1}{\cos^2\beta}$
		= RS
7.4	10e	$LS = \sin\left(\frac{\pi}{4} + x\right) + \sin\left(\frac{\pi}{4} - x\right)$
		$= \sin\frac{\pi}{4}\cos x + \cos\frac{\pi}{4}\sin x + \sin\frac{\pi}{4}\cos x - \cos\frac{\pi}{4}\sin x$
		$=2\sin\frac{\pi}{4}\cos x$
		$= (2)\left(\frac{\sqrt{2}}{2}\right)(\cos x)$
		$= \sqrt{2}\cos x$ $= RS$
7.4	10f	$LS = \sin\left(\frac{\pi}{2} - x\right) \cot\left(\frac{\pi}{2} + x\right)$
		$= \sin\left(\frac{\pi}{2} - x\right) \left(\frac{\cos\left(\frac{\pi}{2} + x\right)}{\sin\left(\frac{\pi}{2} + x\right)}\right)$
	<u> </u>	, , , ,

		$\left(\cos\frac{\pi}{\cos x}\cos x - \sin\frac{\pi}{\sin x}\sin x\right)$
		$= \left(\sin\frac{\pi}{2}\cos x - \cos\frac{\pi}{2}\sin x\right) \times \left(\frac{\cos\frac{\pi}{2}\cos x - \sin\frac{\pi}{2}\sin x}{\sin\frac{\pi}{2}\cos x + \cos\frac{\pi}{2}\sin x}\right)$
		$= ((1)(\cos x) - (0)(\sin x)) \times \left(\frac{(0)(\cos x) - (1)(\sin x)}{(1)(\cos x) + (0)(\sin x)}\right)$ $= (\cos x - 0)\left(\frac{0 - \sin x}{\cos x + 0}\right)$ $= (\cos x)\left(-\frac{\sin x}{\cos x}\right)$
		$= (\cos x - 0) \left(\frac{0 - \sin x}{\cos x + 0} \right)$
		$= (\cos x) \left(-\frac{\sin x}{\cos x} \right)$
		$= -\sin x$ = RS
7.4	11a	$LS = \frac{\cos 2x + 1}{\sin 2x}$
		$=\frac{2\cos^2 x - 1 + 1}{2}$
		$2\sin x \cos x$ $2\cos^2 y$
		$=\frac{2\cos^2 x}{2\sin x \cos x}$
		$=\frac{\cos x}{\sin x}$
		$=\cot x$
	441	= RS
7.4	11b	$LS = \frac{\sin 2x}{1 - \cos 2x}$
		$= \frac{2\sin x \cos x}{1 - \left(1 - 2\sin^2 x\right)}$
		$2\sin x \cos x$
		$=\frac{2\sin^2\theta}{1-1+2\sin^2x}$
		$2\sin x \cos x$
		$-\frac{2\sin^2 x}{}$
		$=\frac{\cos x}{\cos x}$
		$\sin x$
		$= \cot x$ = RS
7.4	11c	$LS = (\sin x + \cos x)^2$
		$= \sin^2 x + 2\sin x \cos x + \cos^2 x$
		$= 1 + 2\sin x \cos x$
		$= 1 + \sin 2x$
7.4	11d	$= RS$ $LS = \cos^4 \theta - \sin^4 \theta$
	I	200 0 0111 0

	1	
		$= (\cos^2 \theta - \sin^2 \theta)(\cos^2 \theta + \sin^2 \theta)$
		$= (\cos^2 \theta - \sin^2 \theta)(1)$
		$=\cos 2\theta$
		= RS
7.4	11e	$LS = \cot \theta - \tan \theta$
		$=\frac{\cos\theta}{\cos\theta} - \frac{\sin\theta}{\cos\theta}$
		$\sin \theta \cos \theta$
		$=\frac{\cos^2\theta-\sin^2\theta}{}$
		$={\sin\theta\cos\theta}$
		$\cos 2\theta$
		$=\frac{1}{\sin\theta\cos\theta}$
		$=\frac{\cos 2\theta}{\cos 2\theta}$
		1 1
		$\frac{1}{2}\sin 2\theta$
		$=2\frac{\cos 2\theta}{\cos 2\theta}$
		$=2\frac{\sin 2\theta}{\sin 2\theta}$
		$= 2 \cot 2\theta$
		=RS
7.4	11f	$LS = \frac{\cos \theta}{\sin \theta} + \frac{\sin \theta}{\cos \theta}$
		$\frac{LS - \frac{1}{\sin \theta} + \frac{1}{\cos \theta}}{\sin \theta}$
		$=\frac{\cos^2\theta+\sin^2\theta}{}$
		$={\sin\theta\cos\theta}$
		1
		$=\frac{1}{\sin\theta\cos\theta}$
		1
		$=\frac{1}{1}$
		$\frac{1}{2}\sin^2\theta$
		_ 2
		$=\frac{1}{\sin 2\theta}$
		$= 2 \csc 2\theta$
		= RS
7.4	11g	$RS = \tan\left(x + \frac{\pi}{4}\right)$
		$\left[\begin{array}{cc} & \cos \left(\frac{x}{4}\right) \end{array}\right]$
		$t_{cor} + t_{cor} \pi$
		$\tan x + \tan \frac{\pi}{4}$
		$\frac{1}{1}$ top π top π
		$1-\tan x \tan \frac{\pi}{4}$
		$\tan x + 1$
		$-\frac{1-(\tan x)(1)}{1-(\tan x)(1)}$
		$1 + \tan x$
		$=\frac{1-\tan x}{1-\tan x}$
	1	_ VVV VV

	1	1.0
		= LS
7.4	11h	$LS = \csc 2x + \cot 2x$
		$=\frac{1}{\sin 2u}+\frac{1}{\tan 2u}$
		$\sin 2x + \tan 2x$
		$=\frac{1}{1}+\frac{1}{2}$
		$=\frac{\sin 2x}{\sin 2x} + \frac{\sin 2x}{\sin 2x}$
		$\frac{\sin 2x}{\cos 2x}$
		$=\frac{1}{\cos 2x}$
		$=\frac{1}{\sin 2x} + \frac{1}{\sin 2x}$
		$=\frac{1+\cos 2x}{\cos x}$
		$={\sin 2x}$
		$=\frac{1+(1-2\sin^2 x)}{1+(1-2\sin^2 x)}$
		$={2\sin x\cos x}$
		$2-2\sin^2 x$
		$-\frac{1}{2\sin x\cos x}$
		$= 2(1-\sin^2 x)$
		$= \frac{-(-3\pi^2 v)}{2\sin x \cos x}$
		$\int_{-1-\sin^2 x}^{2\pi}$
		$\sin x \cos x$
		$=\frac{\cos^2 x}{\cos^2 x}$
		$\sin x \cos x$
		$=\frac{\cos x}{\cos x}$
		$\sin x$
		$=\cot x$
		= RS
7.4	11i	$LS = \frac{2 \tan x}{1 + x}$
		$LS - \frac{1}{1 + \tan^2 x}$
		$2 \tan x$
		$={\sec^2 x}$
		$2 \tan x$
		$=\frac{1}{1}$
		$\left(\frac{1}{\cos^2 x}\right)$
		$= (2\tan x)(\cos^2 x)$
		$= \left(2\frac{\sin x}{\cos x}\right)\left(\cos^2 x\right)$
		$= 2\sin x \cos x$
		$=\sin 2x$
		= RS
7.4	11j	$RS = \frac{\csc t}{\cos t}$
		$\frac{RS - \frac{1}{\csc t - 2\sin t}}{\csc t - 2\sin t}$
	I.	

	T	
		$=\frac{\frac{1}{\sin t}}{\left(\frac{1}{\sin t} - 2\sin t\right)}$
		$= \frac{\frac{1}{\sin t}}{\left(\frac{1}{\sin t} - \frac{2\sin^2 t}{\sin t}\right)}$
		$= \frac{\frac{1}{\sin t}}{\left(\frac{1 - 2\sin^2 t}{\sin t}\right)}$
		$= \frac{1}{1 - 2\sin^2 t}$ $= \frac{1}{1 - 2\sin^2 t}$
		$-\frac{1}{\cos 2t}$ $= \sec 2t$ $= LS$
7.4	11k	$RS = \frac{1}{2} (\sec \theta) (\csc \theta)$ $= \frac{1}{2} \left(\frac{1}{\cos \theta} \right) \left(\frac{1}{\sin \theta} \right)$
		$= \frac{1}{2\cos\theta\sin\theta}$ $= \frac{1}{\sin 2\theta}$
		$= \csc 2\theta$ $= LS$
7.4	111	$RS = \frac{2\sin t \cos t}{\sin t} - \frac{2\cos^2 t - 1}{\cos t}$
		$-\frac{1}{\sin t \cos t} - \frac{1}{\cos t \sin t}$
		$= \frac{2\sin t \cos^2 t - 2\cos^2 t \sin t + \sin t}{\cos t \sin t}$
		$=\frac{\sin t}{t}$
		$\cos t \sin t = \frac{1}{1}$
		$\cos t = \sec t$
		= LS

C1 4	0	1
Chapter	8	$LS = \frac{\cos^2 x}{\cos^2 x}$
Review		$\cot^2 x$
		$\cos^2 r$
		=
		$\left(\frac{\cos^2 x}{x}\right)$
		$\left(\frac{\sin^2 x}{\sin^2 x}\right)$
		$= (\cos^2 x)(\sin^2 x)$
		$\cos^2 x$
		$=\sin^2 x$
		$=1-\cos^2 x$
		= RS
Chapter	9	$LS = \frac{2(\sec^2 x - \tan^2 x)}{}$
Review		$\operatorname{csc} x$
		$=\frac{2(1)}{2}$
		$=\frac{\sqrt{r}}{\csc x}$
		=
		$\csc x$
		$=2\sin x$
		$=\frac{2\sin x\cos x}{\cos x}$
		$\cos x$
		$=\frac{\sin 2x}{\cos x}$
		$\frac{-\cos x}{\cos x}$
		$= \sin 2x \sec x$
		=RS
Chapter Self-	1	$1-2\sin^2 x$
Test		$RS = \frac{1 - 2\sin^2 x}{\cos x + \sin x} + \sin x$
		$\cos x + \sin x$
		$= \frac{1 - 2\sin^2 x + \sin x(\cos x + \sin x)}{1 + \sin^2 x + \sin^2 x}$
		$\cos x + \sin x$
		$\int_{-1}^{\infty} 1 - 2\sin^2 x + \sin x \cos x + \sin^2 x$
		$-\frac{\cos x + \sin x}{\cos x}$
		$\int 1-\sin^2 x + \sin x \cos x$
		$=$ $\cos x + \sin x$
		$= \frac{\cos^2 x + \sin x \cos x}{\cos^2 x + \sin^2 x}$
		$= \frac{\cos x + \sin x \cos x}{\cos x + \sin x}$
		$\cos(\cos x + \sin x)$
		= - '
		$\cos x + \sin x$
		$=\cos x$
		= LS

Location	Question	Correct Answer
Getting	5a (iv)	$y = \pm \sqrt{x-3} + 4$ (Answer missing in answer key but
Started		correct in solutions manual)
Getting	6d	4.4×10^{14}
Started		
8.1	9c	3
8.2	4 iii (d)	$D = \{x \in \mathbf{R} \mid x > 0\}, R = \{y \in \mathbf{R}\}\$
		(Correct in Solutions Manual)
8.2	5b	$D = \{x \in \mathbf{R} \mid x > 6\}, R = \{y \in \mathbf{R}\}\$
8.2	8a	$f(x) = -3 \log_{10} \left(\frac{1}{2} (x - 5) \right) + 2$
8.2	8b	(25, -1)
8.3	4d	1.40 (Correct in Solutions Manual)
8.3	19a	positive for all values $a > 1$
8.3	19b	negative for all values $0 < a < 1$
8.3	19c	undefined for all values $a \le 0$
8.3	21b	$y = \log_2\left(\frac{x}{3}\right)$
8.3	21c	$y = \log_{0.5} x - 2$
8.3	21d	Insert "y =" before given expression.
8.4	3b	-1 log ₃ 7
8.4	10c	$log_4 4$; $x = 4$ (Correct in Solutions Manual)
Mid-Chapter	13b	0.80
Review		
Mid-Chapter	13c	3.82
Review		
Mid-Chapter	13d	1.35
Review		
Mid-Chapter	13e	1.69
Review		
8.5	2a	4.086
8.5	2d	4.090
8.5	14a	x = 5 or x = -1
8.5	14b	x = -5 or x = -4
8.6	10	x = 2
8.6	11b	x = 2.15
8.6	11d	x = 0.33
8.7	12a	7.0, 6.7, 6.4, 6.2, 5.9, 5.7, 5.5
8.7	12b	6.2
Chapter	7d	log144
Review		

Chapter Review	10d	$-3, \frac{1}{2}$
Chapter Self- Test	3b	2

Location	Question	Correct Answer
Getting	4f	
Started		$x = \pi, \frac{\pi}{6}, \frac{5\pi}{6}$
9.1	2a	Answers may vary. For example, $y = \frac{2 - 0.5x}{x^4 - x^2}$
9.1	2b	Answers may vary. For example, $y = (2x)(\sin(2\pi x))$ (insert graph from 2c)
9.1	2c	Answers may vary. For example, $y = (2x)(\cos(2\pi x))$ (insert graph from 2b)
9.3	5 (4e)	$D = \{x \in \mathbf{R} \mid x \neq 1\}, R = \{y \in \mathbf{R}\}\$
9.3	5 (4f)	$D = \{x \in \mathbf{R} \mid x > -4\}, R = \{y \in \mathbf{R}\}$
9.3	6 (4c)	The function is not symmetric. The function is increasing from $-\infty$ to 0 and from 6 to ∞ . zeros at $x = 0, 9$
		The relative minimum is at $x = 6$.
		The relative maximum is at $x = 0$.
9.3	6 (4f)	period: N/A The function is not symmetric.
9.5	0 (41)	The function is not symmetric. The function is increasing from -4 to ∞ .
		zeros: $x = -3$
		maximum/minimum: none
		period: N/A
9.3	8a	$\left\{x \in \mathbf{Z} \middle x \neq -2, 7, (\frac{2n+1}{2})\pi\right\}$
9.3	8c	$\{x \in \mathbf{Z} \mid x \ge -81 \text{ and } x \ne n\pi\}$
9.4	2d (1f)	domain of $(f \div g)$: $\{x \in \mathbf{R} \mid x > 0, x \neq 1\}$
Mid-Chapter Review	7b	$(f \div g)(x) = \frac{10x}{x^2 - 3}$ $D = \{x \in \mathbf{R} \mid x \neq \pm \sqrt{3}, 0\}$
		$D = \{x \in \mathbf{R} \mid x \neq \pm \sqrt{3}, 0\}$
9.5	6c	$f \circ g = \sqrt{4 - x^4}$
		$D = \{x \in \mathbf{R} \mid -\sqrt{2} \le x \le \sqrt{2} \}$
		$R = \{ y \in \mathbf{R} \ 0 \le y \le 2 \}$
		$g \circ f = 4 - x^2$
		$D = \{x \in \mathbf{R} \mid -2 \le x \le 2\}$
	1	$R = \{ y \in \mathbf{R} \ 0 \le y \le 4 \}$

9.5	6d	$f \circ g = 2\sqrt{x-1}$
		$D = \{x \in \mathbf{R} \mid x \ge 1\}$
		$R = \{ y \in \mathbf{R} \mid y \ge 1 \}$ $g \circ f = 2\sqrt{x-1}$
		$D = \{x \in \mathbf{R} \mid x \ge 0\}$
		$R = \{ y \in \mathbf{R} \mid y \ge 0 \}$
9.5	6e	$f \circ g = x$
		$D = \{x \in \mathbf{R} \mid x > 0\}$
		$R = \{ y \in \mathbf{R} \mid y > 0 \}$
		$g \circ f = x$
		$D = \{x \in \mathbf{R}\}$
		$R = \{ y \in \mathbf{R} \}$
9.5	8c	It is vertically stretched by a factor of 2 and translated
		down 1 unit.
9.5	9a	f(g(x)) = 6x + 3
		It has been vertically stretched by a factor of 3 and
		translated up 1 unit.
9.5	9b	g(f(x)) = 6x - 1
		It has been vertically stretched by a factor of 3.
9.5	16b	$f(k) = 2\sqrt{9k - 16 + 5}$
9.6	4	f(x) < g(x): 1.3 < x < 1.6
		f(x) = g(x): $x = 0$ or 1.3
		$f(x) > g(x)$: $0 < x < 1.3$ or $1.6 < x \le 3$
9.6	6e	x = 0.21 or 0.72
9.6	9a	$x \in (-0.57, 1) (6.33, \infty)$
9.6	9e	$x = 0 \text{ or } x \in [0.35, 1.51]$
9.6	14	$x = 0 \pm 2n, x = 0.67 \pm 2n \text{ or } x = 0.62 \pm 2n, \text{ where } n \in \mathbf{I}$
9.7	11d	$P(65) \approx 10.712.509$
9.7	15b	exponential or rational
9.7	15c	exponential or rational
Chapter	5	The part labeled "d)" should be labeled "c)".
Review	1.1	(1) (1) (1) (1) (1)
Chapter	11	f(x) < g(x): -1.06 < x < 0 or x > 1.06
Review		f(x) = g(x): $x = -1.06$, 0, or 1.06
Chantar	120	$f(x) > g(x)$: $x < -1.06$ or $0 < x \le 1.06$
Chapter Review	13a	P(t) = 600t - 1000. The slope is the rate that the
Keview		population is changing. The <i>P</i> -intercept would represent the initial number of frogs.
		represent the initial number of flogs.