Nelson Education Limited Advanced Functions Errata

Advanced Functions Chapter 1

Location	Question	Correct Answer
Getting Started	4d	$\begin{aligned} & \mathrm{D}=\{x \in \mathbf{R}\}, \\ & \mathrm{R}=\{y \in \mathbf{R} \mid-3 \leq y \leq 3\} \end{aligned}$ (Correct in solutions manual)
1.2	4d	Entire number line should be shaded on graph.
Mid-Chapter Review	2b	$\mathrm{D}=[0,10]$
Mid-Chapter Review	2c	$\mathrm{R}=[10,50]$
1.4	3	$(-4,-10)$
1.4	7c	$g(x)=-2\left(2^{3(x-1)}\right)+4$
1.4	9c	$(-1,-23)$
1.4	12	Graph of $h(x)$ (green) should be reflection of graph of $f(x)$ over x-axis.
1.5	6b	Labels should be in degrees, not radians. Curves should not have arrowheads at ends.
1.6	6	$\left\{\begin{aligned} 15, \text { if } 0 & \leq x \leq 500 \\ 15+0.02(x-500), \text { if } x & \geq 500 \end{aligned}\right.$
1.6	12	discontinuous at $p=15$; continuous at $0<p<15$
Chapter Review	3	$\mathrm{R}=\{f(x) \in \mathbf{R} \mid f(x) \geq-1\}$
Chapter Review	17a	$\left\{\begin{aligned} 30, \text { if } x & \leq 200 \\ 24+0.03 x, \text { if } x & >200 \end{aligned}\right.$ (Correct in solutions manual)
Chapter SelfTest	7a	$(-2,17)$
Chapter SelfTest	9a	\$11500
Chapter SelfTest	9b	$\left\{\begin{aligned} 0.05, \text { if } x & \leq 50000 \\ 0.12 x-5500, \text { if } x & >50000 \end{aligned}\right.$

Advanced Functions Chapter 2

Location	Question	Correct Answer
Mid-Chapter Review	1 b	$750 ; 0 ; 250 ; 1100 ; 400 \mathrm{~m}^{3} / \mathrm{month}$
Mid-Chapter Review	3 b	$t \approx 2 ;$ Answers may vary. For example: The graph has a vertex at (2, 21). It appears that a tangent line at this point would be horizontal. $\frac{(f(2.01)-f(1.99))}{0.02}$
2.5	2	$0 \mathrm{~mm} \mathrm{Hg} / \mathrm{s}$

Nelson Education Limited
Advanced Functions Errata

Chapter Review	4 a	Answers may vary. For example, because the unit of the equation is years, you would not choose $3 \leq t \leq 4$ and $4 \leq t \leq 5$. A better choice would be $3.75 \leq t \leq 4.0$ and $4 \leq t \leq 4.25$.
Chapter Review	8	Graph should start at $(0,0)$ and connect to the rest of the curve.

Advanced Functions Chapter 3

Location	Question	Correct Answer
Getting Started	8	The values of x that make $f(x)=0=n$ (Located on arrow above box with "The zeros are -2 and $-6 . ")$
3.4	2 e	$y=x^{2} ;$ reflection in the x-axis, vertical stretch by a factor of 4.8, and horizontal translation 3 units right (Correct in solutions manual)
3.4	6 f	$(-11,-3),(-4,-2),(10,6)$
3.5	3 c	$x-6$
3.5	6 d	$x^{2}+2 x-8$ remainder -4
3.6	8 a	Graph is incorrect; should be graph of $y=(x+6)(x+$ $5)(x-2)$
Chapter Review	2	As $x \rightarrow-\infty, y \rightarrow+\infty$, and as $x \rightarrow \infty, y \rightarrow-\infty$.

Advanced Functions Chapter 4

Location	Question	Correct Answer
4.1	2d	$0, \frac{2}{5},-3$ (Correct in solutions manual)
4.1	14c	$0.45 \mathrm{~s}, 3.33 \mathrm{~s}$ (Correct in solutions manual)
4.1	16	$x=-3, x=-2, x=5$ (Correct in solutions manual)
4.2	17b	Move the terms with variables to one side and constants to the other. Graph $y=2^{x}-x$ and $y=4$ on a graphing calculator and determine where $y=2^{x}-x$ is below $y=4$. $-3.93<x<2.76$
4.2	11a	Answers may vary. For example, $\frac{1}{2} x+1<3$
4.2	19b	$\{x \in \mathbf{R} \mid-3 \geq y \geq 3\}$
4.2	19d	$\{x \in \mathbf{R} \mid x \leq-3\} ;(-\infty,-3)$ graph should be shaded from -3 to left
Mid-Chapter Review	6a	Answers may vary. For example, $3 x+1>x+15$
Mid-Chapter Review	6b	Answers may vary. For example, $5 x-1<x-33$
Mid-Chapter	6c	Answers may vary. For example, $x-3 \leq 3 x-1 \leq x-$

Nelson Education Limited
Advanced Functions Errata

Review		13					
4.3	6 e	$-\frac{3}{2} \leq x$ or $x \geq 3$ (Correct in solutions manual)	$	$	4.3	18	$x-1 \leq$ or $x \geq 2$ (Correct in solutions manual)
:---	:---	:---					
4.4	2 e	$0 \leq x \leq 2$					
4.4	4 a	7 (Correct in solutions manual)					
4.4	4 b	Answers may vary. For example, $(4.5,3)$. (Correct in solutions manual)					
4.4	11 a	Remove graph.					
4.4	$11 \mathrm{~b}, 11 \mathrm{c}$	Answers should be combined. (Correct in solutions manual)					
Chapter Review	3 b	-3.10 (Correct in solutions manual)					
Chapter Review	6 a	Answers may vary. For example, $3 x+1>x+17$					
Chapter Review	6 b	Answers may vary. For example, $4 x-4 \geq x-16$					
Chapter Review	6 c	Answers may vary. For example, $3 x+3 \leq x-21$					
Chapter Review	6 d	Answers may vary. For example, $x-19<3 x-1<x-3$					
Chapter Review	7 b	$x \in\left(-\infty,-\frac{23}{8}\right]$					
Chapter Self- Test	8 a	$\{x \in \mathbf{R} \mid-2<x<7\}$					

Advanced Functions Chapter 5

Location	Question	Correct Answer		
Getting Started	2 f	$\frac{a-b}{2 a-3 b}, a \neq-3,3$		
Getting Started	3 c	$-4 x+8, x \neq-2,3$		
Getting Started	4 d	$\frac{3 x+6}{x^{2}-3 x}, x \neq 0,3$		
Getting Started	4 f	$\frac{-2 a+50}{(a+3)(a-5)(a-4), x \neq-3,4,5}$		
Getting Started	5 d	$x=11$		
5.1	9 a	$\mathrm{D}=\{x \in \mathbf{R}\}$ $\mathrm{R}=\{y \in \mathbf{R}\}$ y-intercept $=8$		
x-intercept $=-4$				
negative on $(-\infty,-4)$				
positive on $(-4,-\infty)$,	
:---				

Nelson Education Limited
Advanced Functions Errata

		increasing on $(-\infty, \infty)$ equation of reciprocal: $y=\frac{1}{2 x+8}$
5.1	9b	$\begin{aligned} & \mathrm{D}=\{x \in \mathbf{R}\} \\ & \mathrm{R}=\{y \in \mathbf{R}\} \\ & y \text {-intercept }=-3 \\ & x \text {-intercept }=-\frac{3}{4} \\ & \text { positive on }\left(-\infty,-\frac{3}{4}\right) \\ & \text { negative on }\left(-\frac{3}{4}, \infty\right) \\ & \text { decreasing on }(-\infty, \infty) \\ & \text { equation of reciprocal: } y=\frac{1}{-4 x-3} \end{aligned}$
5.1	9c	$\begin{aligned} & \mathrm{D}=\{x \in \mathbf{R}\} \\ & \mathrm{R}=\{y \in \mathbf{R} \mid y \leq-12.25\} \\ & y \text {-intercept }=12 \\ & x \text {-intercepts }=,-3 \\ & \text { decreasing on }(-\infty, 0.5) \\ & \text { increasing on }(0.5, \infty) \\ & \text { positive on }(-\infty,-3) \\ & \text { negative on }(-3,4) \\ & \text { equation of reciprocal: } y=\frac{1}{x^{2}-x-12} \\ & \hline \end{aligned}$
5.1	9d	$\begin{aligned} & \mathrm{D}=\{x \in \mathbf{R}\} \\ & \mathrm{R}=\{y \in \mathbf{R} \mid y \leq 0.5\} \\ & y \text {-intercept }=-12 \\ & x \text {-intercepts }=3,2 \\ & \text { increasing on }(-\infty, 2.5) \\ & \text { decreasing on }(2.5, \infty) \\ & \text { negative on }(-\infty, 2) \text { and }(3, \infty) \\ & \text { positive on }(2,3) \\ & \text { equation of reciprocal: } y=\frac{1}{-2 x^{2}+10 x-12} \\ & \hline \end{aligned}$
5.1	12 e	$\begin{aligned} & \mathrm{D}=\{x \in \mathbf{R} \mid 1 \leq x \leq 10000\}, \\ & \mathrm{R}=\{y \in \mathbf{R} \mid 1 \leq y \leq 10000\} \end{aligned}$
5.2	1d	D ; The function in the denominator has zeros at $x=1$ and $x=-3$. the rational function has vertical asymptotes as $x=1$ and $x=-3$.
5.2	2 i	vertical asymptote at $x=-\frac{1}{4}$; horizontal asymptote at $y=2$

Nelson Education Limited
Advanced Functions Errata

5.2	3 c	$y=\frac{x+2}{x^{2}+x-2}$
5.3	2e	$\begin{aligned} & \mathrm{D}=\{x \in \mathbf{R} \mid x \neq 2\} \\ & \mathrm{R}=\{y \in \mathbf{R} \mid y \neq 0\} \end{aligned}$
5.3	3f	positive: $(-\infty,-1)$ and $\left(\frac{3}{4}, \infty\right)$ negative: $\left(-1, \frac{3}{4}\right)$
5.3	4a	$x=-3$; As $x \rightarrow-3$ from the left, $y \rightarrow-\infty$. As $x \rightarrow-3$ from the right, $y \rightarrow \infty$.
5.3	4b	$x=5$; As $x \rightarrow 5$ from the left, $y \rightarrow-\infty$. As $x \rightarrow 5$ from the right, $y \rightarrow \infty$.
5.3	4c	$x=\frac{1}{2}$; As $x \rightarrow \frac{1}{2}$ from the left, $y \rightarrow-\infty$. As $x \rightarrow \frac{1}{2}$ from the right, $y \rightarrow$.
5.3	4d	$x=-\frac{1}{4}$; As $x \rightarrow-\frac{1}{4}$ from the left, $y \rightarrow-\infty$. As $x \rightarrow-\frac{1}{4}$ from the right, $y \rightarrow \infty$.
5.3	5c	vertical asymptote at $x=\frac{1}{4}$ horizontal asymptote at $y=\frac{1}{4}$ $\begin{aligned} & \mathrm{D}=\left\{x \in \mathbf{R} \left\lvert\, x \neq \frac{1}{4}\right.\right\} \\ & \mathrm{R}=\left\{y \in \mathbf{R} \left\lvert\, y \neq \frac{1}{4}\right.\right\} \\ & x \text {-intercept }=-5 \\ & y \text {-intercept }=-5 \end{aligned}$ $f(x)$ is positive on $(-\infty,-5)$ and $\left(\frac{1}{4}, \infty\right)$ and negative on $\left(-5, \frac{1}{4}\right)$ The function is decreasing on $\left(-\infty, \frac{1}{4}\right)$ and on $\left(\frac{1}{4}, \infty\right)$. The function is never increasing.
5.3	7 a	The equation has a general vertical asymptote at $x=-\frac{1}{n}$. The function has a general horizontal asymptote at $y=\frac{8}{n}$. The vertical asymptotes are $-\frac{1}{8}$, $-\frac{1}{4},-\frac{1}{2}$, and -1 . The horizontal asymptotes are 8,4 , 2 , and 1 . The function contracts as n increases. The

Nelson Education Limited
Advanced Functions Errata

		function is positive on $\left(-\infty,-\frac{1}{n}\right)$ and $(0, \infty)$. The function is negative on $\left(-\frac{1}{n}, 0\right)$.
5.3	7c	The horizontal asymptote is $y=\frac{8}{n}$, but because n is negative, the value of y is negative. The vertical asymptote is $x=-\frac{1}{n}$, but because n is negative, the value of x is positive. The function is negative on $(-\infty, 0)$ and $\left(-\frac{1}{n}, \infty\right)$. The function is positive on $\left(0,-\frac{1}{n}\right)$.
f.3		8

Nelson Education Limited
Advanced Functions Errata

Mid-Chapter Review	5	$y=\frac{x}{x-2}, y=1 ; y=-\frac{7}{4} ; y=\frac{1}{x^{2}+2 x-15}, y=0$
Mid-Chapter Review	6a	$\mathrm{D}=\{x \in \mathbf{R} \mid x \neq 6\}$; vertical asymptote: $x=6$; horizontal asymptote: $y=0$; no x-intercept; y-intercept: $-\frac{5}{6}$; negative when the denominator is negative; positive when the numerator is positive; $x-6$ is negative on $x<6 ; f(x)$ is negative on $(-\infty, 6)$ and positive on $(6, \infty)$; function is decreasing on $(-\infty, 6)$ and $(6, \infty)$
Mid-Chapter Review	6b	$\mathrm{D}=\{x \in \mathbf{R} \mid x \neq-4\} ;$ vertical asymptote: $x=-4 ;$ horizontal asymptote: $y=3$; x-intercept: $x=0$; y-intercept: $f(0)=0$; function is increasing on $(-\infty,-4)$ and $(-4, \infty)$; positive on $(-\infty,-4)$ and $(0, \infty)$; negative on $(-4,0)$
Mid-Chapter Review	6c	$\mathrm{D}=\{x \in \mathbf{R} \mid x \neq 2\} ;$ straight, horizontal line with a hole at $x=-2$; always positive and never increases or decreases
Mid-Chapter Review	6d	$\mathrm{D}=\left\{x \in \mathbf{R} \left\lvert\, x \neq \frac{1}{2}\right.\right\} ;$ vertical asymptote: $x=\frac{1}{2} ;$ horizontal asymptote: $y=\frac{1}{2}$; x-intercept: $x=2$; y-intercept: $f(0)=5$; function is increasing on $\left(-\infty, \frac{1}{2}\right)$ and $\left(\frac{1}{2}, \infty\right)$
5.4	1	Yes; answers may vary. For example, substituting each value for x in the equation produces the same value on each side of the equation, so both are solutions.
5.4	6d	$x=0$ and $x=1$
5.4	6 e	$x=-1 \text { and } x=-\frac{27}{13}$
5.4	7 e	$x=-1.72,2.72$
5.4	8a	$\frac{x+1}{x-2}=\frac{x+3}{x-4}$ Multiply both sides by the LCD, $(x-2)(x-4)$. $\begin{aligned} & (x-2)(x-4)\left(\frac{x+1}{x-2}\right) \\ & =(x-2)(x-4)\left(\frac{x+3}{x-4}\right) \\ & (x-4)(x+1)=(x-2)(x+3) \end{aligned}$ Simplify. $x^{2}-3 x-4=x^{2}+x-6$ Simplify the equation so that 0 is on one side of the

Nelson Education Limited
Advanced Functions Errata

		equation. $\begin{aligned} & x^{2}-x^{2}-3 x-x-4+6 \\ & =x^{2}-x^{2}+x-x-6+6 \\ & -4 x+2=0 \\ & -4 x=-2 \\ & x=\frac{1}{2} \end{aligned}$
5.4	12a	After 6666.67 min
5.4	13b	1.05 min
5.5	1a	$(-\infty, 1)$ and $(3, \infty)$
5.5	4a	$-5<x<-4.5$
5.5	4f	$-1<x<\frac{7}{8} \text { and } x>4$
5.5	5d	$t<-5$ and $0<t<3$
5.5	6a	$x \in(-6,-1]$ or $x \in(4, \infty)$
5.5	6b	$x \in(-\infty,-3)$
5.5	6c	$x \in(-4,-2]$ or $x \in(-1,2]$
5.5	7a	$x<-6,-1<x<\frac{1}{2}, x>2$
5.5	8c	It would be difficult to find a situation that could be represented by these rational expressions because very few positive values of t yield a positive value of y.
5.5	9	Yes, as $f(t)-g(t)>0$ on the interval $(0,0.31)$. For instance, the bacteria in the tap water will outnumber the bacteria in the pond water after $t=0.2$ days.
5.5	10a	$\frac{(x-5)(x+1)}{2 x}<0$
5.5	11	when $1<x<5$
5.5	14	$14.48^{\circ}<x<165.52^{\circ}$ and $180^{\circ}<x<360^{\circ}$
5.5	15	$0^{\circ}<x<2^{\circ}$
5.6	5d	11.72
5.6	6a	slope $=286.1$; vertical asymptote: $x=-0.3$
5.6	6b	slope $=2.74$; vertical asymptote: $x=-5$
5.6	6c	slope $=-44.64 ;$ vertical asymptote: $x=-\frac{5}{3}$
5.6	7b	0
5.6	9b	-\$1.22 per T-shirt
5.6	10a	-11 houses per month
5.6	10b	-1 house per month
5.6	12d	The instantaneous speed for a specific time, t, is the acceleration of the object at this time.
Chapter Review	1b	$\begin{aligned} & \mathrm{D}=\{x \in \mathbf{R}\} ; \mathrm{R}=\{y \in \mathbf{R} \mid y \geq-10.125\} ; \\ & x \text {-intercept }=0.5 \text { and }-4 ; \\ & \text { positive on }(-\infty,-4) \text { and }(0.5, \infty) ; \end{aligned}$

Nelson Education Limited
Advanced Functions Errata

		negative on $(-4,0.5) ;$ decreasing on $(-\infty,-1.75) ;$ increasing on $(-1.75, \infty)$
Chapter Review	1 c	$\mathrm{D}=\{x \in \mathbf{R}\} ; \mathrm{R}=\{y \in \mathbf{R} \mid y \geq 2\} ;$ no x-intercepts; y-intercept $=2 ;$ decreasing on $(-\infty, 0) ;$ increasing on $(0, \infty) ;$ always positive; never negative
Chapter Review	4	The locust population increased during the first 1.4 years, to reach a maximum of 1287000. The population gradually decreased until the end of the 50 years, when the population was 141400.
Chapter Review	10 d	$0<x<1.5$ or $x=3$
Chapter Review	11	$t>64.73$
Chapter Review	14	$(6,6)$
Chapter Self- Test	6 b	The graph will have a hole at $x=-\frac{b}{a}$ rather than a vertical asymptote at this point if it happens that $c x+d=k(a x+b)$ for some real number k.

Advanced Functions Chapter 6

Location	Question	Correct Answer
6.1	7 c	$-\pi$ radians
6.1	7 e	$-\frac{3 \pi}{4}$
6.1	9 h	$-\frac{2 \pi}{3}$
6.1	16	81.25 m
6.1	2 d iv	$8=\frac{\pi}{2}$
6.2	4 d	$-\cot \left(\frac{\pi}{4}\right)$
6.2	8 a	$-\sec \left(\frac{\pi}{6}\right)$
6.2	$8 \mathrm{cos}\left(\frac{\pi}{4}\right)$	
6.2	8 c	$-\tan \left(\frac{\pi}{6}\right)$
6.2		$-\csc \left(\frac{\pi}{3}\right)$
6.2		

Nelson Education Limited
Advanced Functions Errata

6.2	8d	$-\cot \left(\frac{\pi}{3}\right)$
6.2	8 e	$-\sin \left(\frac{\pi}{6}\right)$
6.4	5b	period $=6 \pi$, amplitude $=6$, equation of the axis is $y=6 ; y=-6 \sin (0.5 x)-2$
6.4	9b	50
6.6	9	$\begin{aligned} & 0.98 \leq t \leq 1.52 \mathrm{~min}, \\ & 3.48 \mathrm{~min} \leq t \leq 4.02 \mathrm{~min}, \\ & 5.98 \mathrm{~min} \leq t \leq 6.52 \mathrm{~min} \end{aligned}$
6.6	10a	$n(t)=3.7 \cos \left(\frac{\pi}{183}(t-172)\right)+12$
6.6	10b	$y=9.2$ hours
6.7	9b	fastest: $t=4$ months, $t=16$ months, $t=28$ months, $t=40$ months; slowest: $t=10$ months, $t=22$ months , $t=34$ months, $t=46$ months
6.7	9c	about 1.01 mice per owl/month
Chapter Review	6a	$\tan \theta=\frac{12}{-5}$
Chapter Review	6c	about 112.6° or 247.4°
Chapter Review	10	$y=3 \cos \left(x+\frac{3 \pi}{4}\right)-1$
Chapter SelfTest	3	$y \approx 94.9$

Advanced Functions Chapter 7

Location	Question	Correct Answer
7.4	4 b	$\mathrm{LS}=1-2 \sin ^{2} x$ $=\cos ^{2} x$ $=2 \cos ^{2} x-1$ $=\mathrm{RS}$
7.4	9 a	$\mathrm{LS}=\frac{\cos ^{2} \theta-\sin ^{2} \theta}{\cos ^{2} \theta+\sin \theta \cos \theta}$ $=\frac{(\cos \theta-\sin \theta)(\cos \theta+\sin \theta)}{(\cos \theta)(\cos \theta+\sin \theta)}$ $=\frac{\cos \theta-\sin \theta}{\cos \theta}$ $=\frac{\cos \theta}{\cos \theta}-\frac{\sin \theta}{\cos \theta}$

Nelson Education Limited
Advanced Functions Errata

		$\begin{aligned} & =1-\tan \theta \\ & =\mathrm{RS} \end{aligned}$
7.4	9c	$\begin{aligned} & \mathrm{RS}=\frac{1}{\cos ^{2} x}-1-\cos ^{2} x \\ & =\frac{1}{\cos ^{2} x}-\frac{\cos ^{2} x}{\cos ^{2} x}-\cos ^{2} x \\ & =\frac{1-\cos ^{2} x}{\cos ^{2} x}-\cos ^{2} x \\ & =\frac{\sin ^{2} x}{\cos ^{2} x}-\cos ^{2} x \\ & =\tan ^{2} x-\cos ^{2} x \\ & =\mathrm{LS} \end{aligned}$
7.4	9d	$\begin{aligned} & \mathrm{LS}=\frac{1-\cos \theta}{(1+\cos \theta)(1-\cos \theta)}+\frac{1+\cos \theta}{(1+\cos \theta)(1-\cos \theta)} \\ & =\frac{1-\cos \theta+1+\cos \theta}{1-\cos ^{2} \theta} \\ & =\frac{2}{\sin ^{2} \theta} \\ & =\mathrm{RS} \end{aligned}$
7.4	10a	$\begin{aligned} & \mathrm{LS}=\cos x \tan ^{3} x \\ & =\cos x\left(\frac{\sin ^{3} x}{\cos ^{3} x}\right) \\ & =\frac{\sin ^{3} x}{\cos ^{2} x} \\ & =\frac{\sin ^{3} x}{\cos ^{2} x} \sin x \\ & =\tan ^{2} x \sin x \\ & =\text { RS } \end{aligned}$
7.4	10b	$\begin{aligned} & \mathrm{LS}=\sin ^{2} \theta+\cos ^{4} \theta \\ & =\sin ^{2} \theta+\cos ^{2} \theta \cos ^{2} \theta \\ & =\sin ^{2} \theta+\left(1-\sin ^{2} \theta\right)\left(1-\sin ^{2} \theta\right) \\ & =\sin ^{2} \theta+\left(1-2 \sin ^{2} \theta+\left(\sin ^{2} \theta \sin ^{2} \theta\right)\right) \\ & =\sin ^{2} \theta+1-2 \sin ^{2} \theta+\left(\sin ^{2} \theta \sin ^{2} \theta\right) \\ & =1-\sin ^{2} \theta+\sin ^{2} \theta \sin ^{2} \theta \\ & =\cos ^{2} \theta+\sin ^{2} \theta \sin ^{2} \theta \\ & =\cos ^{2} \theta+\sin ^{4} \theta \\ & =\text { RS } \end{aligned}$
7.4	10c	$\mathrm{LS}=(\sin x+\cos x)\left(\frac{\tan ^{2} x+1}{\tan x}\right)$

Nelson Education Limited
Advanced Functions Errata

		$\begin{aligned} & =(\sin x+\cos x)\left(\frac{\sec ^{2} x}{\tan x}\right) \\ & =(\sin x+\cos x)\left(\frac{1}{\cos ^{2} x}\right)\left(\frac{1}{\tan x}\right) \\ & =(\sin x+\cos x)\left(\frac{\cos x}{\sin x \cos ^{2} x}\right) \\ & =(\sin x+\cos x)\left(\frac{1}{\cos ^{2} x}\right)\left(\frac{\cos x}{\sin x}\right) \\ & =(\sin x+\cos x)\left(\frac{1}{\sin x \cos x}\right) \\ & =\frac{\sin x}{\sin x \cos x}+\frac{\cos x}{\sin x \cos x} \\ & =\frac{1}{\cos x}+\frac{1}{\sin x} \\ & =\mathrm{RS} \end{aligned}$
7.4	10d	$\begin{aligned} & \mathrm{LS}=\tan ^{2} \beta+\cos ^{2} \beta+\sin ^{2} \beta \\ & =\tan ^{2} \beta+1 \\ & =\sec ^{2} \beta \\ & =\frac{1}{\cos ^{2} \beta} \\ & =\mathrm{RS} \end{aligned}$
7.4	10e	$\begin{aligned} & \mathrm{LS}=\sin \left(\frac{\pi}{4}+x\right)+\sin \left(\frac{\pi}{4}-x\right) \\ & =\sin \frac{\pi}{4} \cos x+\cos \frac{\pi}{4} \sin x+\sin \frac{\pi}{4} \cos x-\cos \frac{\pi}{4} \sin x \\ & =2 \sin \frac{\pi}{4} \cos x \\ & =(2)\left(\frac{\sqrt{2}}{2}\right)(\cos x) \\ & =\sqrt{2} \cos x \\ & =\mathrm{RS} \end{aligned}$
7.4	10f	$\begin{aligned} & \mathrm{LS}=\sin \left(\frac{\pi}{2}-x\right) \cot \left(\frac{\pi}{2}+x\right) \\ & =\sin \left(\frac{\pi}{2}-x\right)\left(\frac{\cos \left(\frac{\pi}{2}+x\right)}{\sin \left(\frac{\pi}{2}+x\right)}\right) \end{aligned}$

Nelson Education Limited
Advanced Functions Errata

		$\begin{aligned} & =\left(\sin \frac{\pi}{2} \cos x-\cos \frac{\pi}{2} \sin x\right) \times\left(\frac{\cos \frac{\pi}{2} \cos x-\sin \frac{\pi}{2} \sin x}{\sin \frac{\pi}{2} \cos x+\cos \frac{\pi}{2} \sin x}\right) \\ & =((1)(\cos x)-(0)(\sin x)) \times\left(\frac{(0)(\cos x)-(1)(\sin x)}{(1)(\cos x)+(0)(\sin x)}\right) \\ & =(\cos x-0)\left(\frac{0-\sin x}{\cos x+0}\right) \\ & =(\cos x)\left(-\frac{\sin x}{\cos x}\right) \\ & =-\sin x \\ & =\text { RS } \end{aligned}$
7.4	11a	$\begin{aligned} & \mathrm{LS}=\frac{\cos 2 x+1}{\sin 2 x} \\ & =\frac{2 \cos ^{2} x-1+1}{2 \sin x \cos x} \\ & =\frac{2 \cos ^{2} x}{2 \sin x \cos x} \\ & =\frac{\cos x}{\sin x} \\ & =\cot x \\ & =\mathrm{RS} \end{aligned}$
7.4	11b	$\begin{aligned} & \text { LS }=\frac{\sin 2 x}{1-\cos 2 x} \\ & =\frac{2 \sin x \cos x}{1-\left(1-2 \sin ^{2} x\right)} \\ & =\frac{2 \sin x \cos x}{1-1+2 \sin ^{2} x} \\ & =\frac{2 \sin x \cos x}{2 \sin ^{2} x} \\ & =\frac{\cos x}{\sin x} \\ & =\cot x \\ & =\text { RS } \end{aligned}$
7.4	11c	$\begin{aligned} & \mathrm{LS}=(\sin x+\cos x)^{2} \\ & =\sin ^{2} x+2 \sin x \cos x+\cos ^{2} x \\ & =1+2 \sin x \cos x \\ & =1+\sin 2 x \\ & =\text { RS } \end{aligned}$
7.4	11d	$\mathrm{LS}=\cos ^{4} \theta-\sin ^{4} \theta$

Nelson Education Limited
Advanced Functions Errata

		$\begin{aligned} & =\left(\cos ^{2} \theta-\sin ^{2} \theta\right)\left(\cos ^{2} \theta+\sin ^{2} \theta\right) \\ & =\left(\cos ^{2} \theta-\sin ^{2} \theta\right)(1) \\ & =\cos 2 \theta \\ & =\text { RS } \end{aligned}$
7.4	11e	$\begin{aligned} & \mathrm{LS}=\cot \theta-\tan \theta \\ & =\frac{\cos \theta}{\sin \theta}-\frac{\sin \theta}{\cos \theta} \\ & =\frac{\cos ^{2} \theta-\sin ^{2} \theta}{\sin \theta \cos \theta} \\ & =\frac{\cos 2 \theta}{\sin \theta \cos \theta} \\ & =\frac{\cos 2 \theta}{\frac{1}{2} \sin 2 \theta} \\ & =2 \frac{\cos 2 \theta}{\sin 2 \theta} \\ & =2 \cot 2 \theta \\ & =\mathrm{RS} \end{aligned}$
7.4	11f	$\begin{aligned} & \mathrm{LS}=\frac{\cos \theta}{\sin \theta}+\frac{\sin \theta}{\cos \theta} \\ & =\frac{\cos ^{2} \theta+\sin ^{2} \theta}{\sin \theta \cos \theta} \\ & =\frac{1}{\sin \theta \cos \theta} \\ & =\frac{1}{\frac{1}{2} \sin ^{2} \theta} \\ & =\frac{2}{\sin 2 \theta} \\ & =2 \csc 2 \theta \\ & =\text { RS } \end{aligned}$
7.4	11g	$\begin{aligned} & \mathrm{RS}=\tan \left(x+\frac{\pi}{4}\right) \\ & =\frac{\tan x+\tan \frac{\pi}{4}}{1-\tan x \tan \frac{\pi}{4}} \\ & =\frac{\tan x+1}{1-(\tan x)(1)} \\ & =\frac{1+\tan x}{1-\tan x} \end{aligned}$

Nelson Education Limited
Advanced Functions Errata

		= LS
7.4	11h	$\begin{aligned} & \text { LS }=\csc 2 x+\cot 2 x \\ & =\frac{1}{\sin 2 x}+\frac{1}{\tan 2 x} \\ & =\frac{1}{\sin 2 x}+\frac{1}{\left(\frac{\sin 2 x}{\cos 2 x}\right)} \\ & =\frac{1}{\sin 2 x}+\frac{\cos 2 x}{\sin 2 x} \\ & =\frac{1+\cos 2 x}{\sin 2 x} \\ & =\frac{1+\left(1-2 \sin ^{2} x\right)}{2 \sin x \cos x} \\ & =\frac{2-2 \sin ^{2} x}{2 \sin x \cos x} \\ & =\frac{2(1-\sin 2 x)}{2 \sin x \cos x} \\ & =\frac{1-\sin 2 x}{\sin x \cos x} \\ & =\frac{\cos { }^{2} x}{\sin x \cos x} \\ & =\frac{\cos x}{\sin x} \\ & =\cot x \\ & =\mathrm{RS} \end{aligned}$
7.4	11i	$\begin{aligned} & \mathrm{LS}=\frac{2 \tan x}{1+\tan ^{2} x} \\ & =\frac{2 \tan x}{\sec ^{2} x} \\ & =\frac{2 \tan x}{\left(\frac{1}{\cos ^{2} x}\right)} \\ & =(2 \tan x)\left(\cos ^{2} x\right) \\ & =\left(2 \frac{\sin x}{\cos x}\right)\left(\cos ^{2} x\right) \\ & =2 \sin x \cos x \\ & =\sin 2 x \\ & =\mathrm{RS} \end{aligned}$
7.4	11 j	$\mathrm{RS}=\frac{\csc t}{\csc t-2 \sin t}$

Nelson Education Limited
Advanced Functions Errata

		$\begin{aligned} & =\frac{\frac{1}{\sin t}}{\left(\frac{1}{\sin t}-2 \sin t\right)} \\ & =\frac{\frac{1}{\sin t}}{\left(\frac{1}{\sin t}-\frac{2 \sin ^{2} t}{\sin t}\right)} \\ & =\frac{\frac{1}{\sin t}}{\left(\frac{1-2 \sin ^{2} t}{\sin t}\right)} \\ & =\frac{1}{1-2 \sin ^{2} t} \\ & =\frac{1}{\cos 2 t} \\ & =\sec 2 t \\ & =\text { LS } \end{aligned}$
7.4	11k	$\begin{aligned} & \mathrm{RS}=\frac{1}{2}(\sec \theta)(\csc \theta) \\ & =\frac{1}{2}\left(\frac{1}{\cos \theta}\right)\left(\frac{1}{\sin \theta}\right) \\ & =\frac{1}{2 \cos \theta \sin \theta} \\ & =\frac{1}{\sin 2 \theta} \\ & =\csc 2 \theta \\ & =\mathrm{LS} \end{aligned}$
7.4	111	$\begin{aligned} & \mathrm{RS}=\frac{2 \sin t \cos t}{\sin t}-\frac{2 \cos ^{2} t-1}{\cos t} \\ & =\frac{2 \sin t \cos ^{2} t}{\sin t \cos t}-\frac{\sin t\left(2 \cos ^{2} t-1\right)}{\cos t \sin t} \\ & =\frac{2 \sin t \cos ^{2} t-2 \cos ^{2} t \sin t+\sin t}{\cos t \sin t} \\ & =\frac{\sin t}{\cos t \sin t} \\ & =\frac{1}{\cos t} \\ & =\sec t \\ & =\mathrm{LS} \end{aligned}$

Nelson Education Limited
Advanced Functions Errata

Chapter Review	8	$\begin{aligned} & \text { LS }=\frac{\cos ^{2} x}{\cot ^{2} x} \\ & =\frac{\cos ^{2} x}{\left(\frac{\cos ^{2} x}{\sin ^{2} x}\right)} \\ & =\frac{\left(\cos ^{2} x\right)\left(\sin ^{2} x\right)}{\cos ^{2} x} \\ & =\sin ^{2} x \\ & =1-\cos ^{2} x \\ & =\text { RS } \end{aligned}$
Chapter Review	9	$\begin{aligned} & \mathrm{LS}=\frac{2\left(\sec ^{2} x-\tan ^{2} x\right)}{\csc x} \\ & =\frac{2(1)}{\csc x} \\ & =\frac{2}{\csc x} \\ & =2 \sin x \\ & =\frac{2 \sin x \cos x}{\cos x} \\ & =\frac{\sin 2 x}{\cos x} \\ & =\sin 2 x \sec x \\ & =\text { RS } \end{aligned}$
Chapter SelfTest	1	$\begin{aligned} & \mathrm{RS}=\frac{1-2 \sin ^{2} x}{\cos x+\sin x}+\sin x \\ & =\frac{1-2 \sin ^{2} x+\sin x(\cos x+\sin x)}{\cos x+\sin x} \\ & =\frac{1-2 \sin ^{2} x+\sin x \cos x+\sin ^{2} x}{\cos x+\sin x} \\ & =\frac{1-\sin ^{2} x+\sin x \cos x}{\cos x+\sin x} \\ & =\frac{\cos ^{2} x+\sin x \cos x}{\cos x+\sin x} \\ & =\frac{\cos (\cos x+\sin x)}{\cos x+\sin x} \\ & =\cos x \\ & =\mathrm{LS} \end{aligned}$

Nelson Education Limited
Advanced Functions Errata
Advanced Functions Chapter 8

Location	Question	Correct Answer
Getting Started	5a (iv)	$y= \pm \sqrt{x-3}+4$ (Answer missing in answer key but correct in solutions manual)
Getting Started	6d	4.4×10^{14}
8.1	9c	3
8.2	4 iii (d)	$\mathrm{D}=\{x \in \mathbf{R} \mid x>0\}, \mathbf{R}=\{y \in \mathbf{R}\}$ (Correct in Solutions Manual)
8.2	5b	$\mathrm{D}=\{x \in \mathbf{R} \mid x>6\}, \mathbf{R}=\{y \in \mathbf{R}\}$
8.2	8a	$f(x)=-3 \log _{10}\left(\frac{1}{2}(x-5)\right)+2$
8.2	8b	$(25,-1)$
8.3	4d	1.40 (Correct in Solutions Manual)
8.3	19a	positive for all values $a>1$
8.3	19b	negative for all values $0<a<1$
8.3	19c	undefined for all values $a \leq 0$
8.3	21b	$y=\log _{2}\left(\frac{x}{3}\right)$
8.3	21c	$y=\log _{0.5} x-2$
8.3	21d	Insert " $y=$ " before given expression.
8.4	3b	$-1 \log _{3} 7$
8.4	10c	$\log _{4} 4 ; x=4$ (Correct in Solutions Manual)
Mid-Chapter Review	13b	0.80
Mid-Chapter Review	13c	3.82
Mid-Chapter Review	13d	1.35
Mid-Chapter Review	13 e	1.69
8.5	2a	4.086
8.5	2d	4.090
8.5	14a	$x=5$ or $x=-1$
8.5	14b	$x=-5$ or $x=-4$
8.6	10	$x=2$
8.6	11b	$x=2.15$
8.6	11d	$x=0.33$
8.7	12a	$7.0,6.7,6.4,6.2,5.9,5.7,5.5$
8.7	12b	6.2
Chapter Review	7d	$\log 144$

Nelson Education Limited
Advanced Functions Errata

Chapter Review	10 d	$-3, \frac{1}{2}$
Chapter Self- Test	3 b	2

Advanced Functions Chapter 9

Location	Question	Correct Answer
Getting Started	4f	$x=\pi, \frac{\pi}{6}, \frac{5 \pi}{6}$
9.1	2a	Answers may vary. For example, $y=\frac{2-0.5 x}{x^{4}-x^{2}}$
9.1	2b	Answers may vary. For example, $y=(2 x)(\sin (2 \pi \mathrm{x}))$ (insert graph from 2c)
9.1	2c	Answers may vary. For example, $y=(2 x)(\cos (2 \pi \mathrm{x}))$ (insert graph from 2 b)
9.3	5 (4e)	$\mathrm{D}=\{x \in \mathbf{R} \mid x \neq 1\}, \mathbf{R}=\{y \in \mathbf{R}\}$
9.3	5 (4f)	$\mathrm{D}=\{x \in \mathbf{R} \mid x>-4\}, \mathbf{R}=\{y \in \mathbf{R}\}$
9.3	6 (4c)	The function is not symmetric. The function is increasing from $-\infty$ to 0 and from 6 to ∞. zeros at $x=0,9$ The relative minimum is at $x=6$. The relative maximum is at $x=0$. period: N/A
9.3	6 (4f)	The function is not symmetric. The function is increasing from -4 to ∞. zeros: $x=-3$ maximum/minimum: none period: N/A
9.3	8a	$\left\{x \in \mathbf{Z} \mid x \neq-2,7,\left(\frac{2 n+1}{2}\right) \pi\right\}$
9.3	8c	$\{x \in \mathbf{Z} \mid x \geq-81$ and $x \neq n \pi\}$
9.4	2d (1f)	domain of $(f \div g):\{x \in \mathbf{R} \mid x>0, x \neq 1\}$
Mid-Chapter Review	7b	$\begin{aligned} & (f \div g)(x)=\frac{10 x}{x^{2}-3} \\ & \mathrm{D}=\{x \in \mathbf{R} \mid x \neq \pm \sqrt{3}, 0\} \end{aligned}$
9.5	6c	$\begin{aligned} & f \circ g=\sqrt{4-x^{4}} \\ & \mathrm{D}=\{x \in \mathbf{R} \mid-\sqrt{2} \leq x \leq \sqrt{2}\} \\ & \mathrm{R}=\{y \in \mathbf{R} \mid 0 \leq y \leq 2\} \\ & g \circ f=4-x^{2} \\ & \mathrm{D}=\{x \in \mathbf{R} \mid-2 \leq x \leq 2\} \\ & \mathrm{R}=\{y \in \mathbf{R} \mid 0 \leq y \leq 4\} \end{aligned}$

Nelson Education Limited
Advanced Functions Errata

9.5	6d	$\begin{aligned} & f \circ g=2 \sqrt{x-1} \\ & \mathrm{D}=\{x \in \mathbf{R} \mid x \geq 1\} \\ & \mathrm{R}=\{y \in \mathbf{R} \mid y \geq 1\} \\ & g \circ f=2 \sqrt{x-1} \\ & \mathrm{D}=\{x \in \mathbf{R} \mid x \geq 0\} \\ & \mathrm{R}=\{y \in \mathbf{R} \mid y \geq 0\} \end{aligned}$
9.5	6 e	$\begin{aligned} & f \circ g=x \\ & \mathrm{D}=\{x \in \mathbf{R} \mid x>0\} \\ & \mathrm{R}=\{y \in \mathbf{R} \mid y>0\} \\ & g \circ f=x \\ & \mathrm{D}=\{x \in \mathbf{R}\} \\ & \mathrm{R}=\{y \in \mathbf{R}\} \\ & \hline \end{aligned}$
9.5	8c	It is vertically stretched by a factor of 2 and translated down 1 unit.
9.5	9a	$f(g(x))=6 x+3$ It has been vertically stretched by a factor of 3 and translated up 1 unit.
9.5	9b	$g(f(x))=6 x-1$ It has been vertically stretched by a factor of 3 .
9.5	16b	$f(k)=2 \sqrt{9 k-16}+5$
9.6	4	$\begin{aligned} & f(x)<g(x): 1.3<x<1.6 \\ & f(x)=g(x): x=0 \text { or } 1.3 \\ & f(x)>g(x): 0<x<1.3 \text { or } 1.6<x \leq 3 \end{aligned}$
9.6	6e	$x=0.21$ or 0.72
9.6	9a	$x \in(-0.57,1)(6.33, \infty)$
9.6	9 e	$x=0$ or $x \in[0.35,1.51]$
9.6	14	$x=0 \pm 2 n, x=0.67 \pm 2 n$ or $x=0.62 \pm 2 n$, where $n \in \mathbf{I}$
9.7	11d	$P(65) \approx 10712509$
9.7	15b	exponential or rational
9.7	15c	exponential or rational
Chapter Review	5	The part labeled "d)" should be labeled "c)".
Chapter Review	11	$\begin{aligned} & f(x)<g(x):-1.06<x<0 \text { or } x>1.06 \\ & f(x)=g(x): x=-1.06,0, \text { or } 1.06 \\ & f(x)>g(x): x<-1.06 \text { or } 0<x \leq 1.06 \end{aligned}$
Chapter Review	13a	$P(t)=600 t-1000$. The slope is the rate that the population is changing. The P-intercept would represent the initial number of frogs.

